Novel Modeling of Mars' lonospheric Electro- Georgia dynamics

Jérémy A. Riousset,¹ Carol S. Paty,¹ Robert J. Lillis,² Matthew O. Fillingim,² Scott L. England,² and Paul Withers³

¹School of Earth and Atmospheric Sciences, Georgia Tech, Atlanta, GA, 30306, USA (riousset@gatech.edu; carol.paty@eas.gatech.edu) ²Space Sciences Lab, UC Berkeley, Berkeley, CA, 94720, USA (rlillis@ssl.berkeley.edu; matt@ssl.berkeley.edu; england@ssl.berkeley.edu) ³Astronomy Department, Boston U, Boston, MA, 02215, USA (withers@bu.edu)

Abstract

Interactions between Mars' unique crustal magnetic fields and upper atmospheric electrons, ions and neutrals lead to the formation of currents in the ionospheric dynamo region. These interactions involve elastic and inelastic collisions between ions, electrons and neutrals in the presence of varying pressures, temperatures and densities. In addition, the complex magnetic topology of Mars leads to strong and weak, open and closed magnetic field regions in very close proximity. The resulting 'patchy' ionosphere varies on spatial scales of \leq 100 km. These conditions make it impossible to derive an analytical solution of these ionospheric currents. Here we present a novel three-dimensional, multifluid, self-consistent, and dynamic model of the Mars ionospheric currents. These currents are driven by the coupling of atmospheric neutral winds to the ions and electromagnetic forcing of electrons. Our work is built upon a multifluid plasma dynamic model that tracks three ion species $(O_2^+, CO_2^+, and O^+)$. This method applies equations for conservation of mass, conservation of momentum, charge neutrality, time dependent pressure for electron and ion species while simultaneously solving the generalized Ohm's Law and Maxwell-Ampere equation for the electric and magnetic fields. Incorporated into these equations are the aforementioned collisional interactions between the ions, electrons and neutrals. Our results demonstrate the feasibility of a self-consistent model of Mars' ionospheric electrodynamics, and investigate in particular the influence of thermospheric neutral winds, and magnetic topologies on the formation and evolution of ionospheric currents on Mars.

II. Model Formulation

- A 2-step Runge-Kutta method is used [1; 4; 6]
- Neumann boundary conditions are employed
- $i=O_{2}^{+}, CO_{2}^{+}, O^{+}; e=$ electron
 - $\frac{\partial \rho_{\rm i}}{\partial t} + \nabla \cdot \left(\rho_{\rm i} \vec{V}_{\rm i} \right) = (S_{\rm i} L_{\rm i}) m_{\rm i}$
 - $\rho_{i} \frac{\partial \vec{V}_{i}}{\partial t} = \rho_{i} n_{i} \left(\vec{E} + \vec{V}_{i} \times \vec{B} \right) \nabla P_{i} \frac{GM_{M}}{2} \rho_{i} \hat{r} + \rho_{i} \nu_{i-n} \left(\vec{U}_{n} \vec{V}_{i} \right) + m_{i} S_{i} \left(\vec{U}_{n} \vec{V}_{i} \right)$
- Fundamental equations (implemented)
- Elastic ion-neutral collision (implemented)
- Electron collisions (in progress)
- Non-elastic collisions (in progress)

I. Introduction

Here we present the first stages of the development of the model, with particular attention on the model validation. The

$$\begin{aligned} & \vec{P}_{i} \frac{\partial t}{\partial t} = q_{i} n_{i} \left(\vec{L} + \vec{v}_{i} \times \vec{D} \right)^{-1} \vec{V}_{i} + \left(\vec{R}_{M} + \vec{r} \right)^{2} \vec{P}_{i} \vec{P}_{i} \vec{P}_{i} \vec{\nu}_{i-n} \left(\vec{O}_{n} - \vec{v}_{i} \right)^{-1} \vec{H}_{i} \vec{O}_{i} \left(\vec{O}_{n} - \vec{v}_{i} \right) \\ & \frac{\partial \vec{P}_{e}}{\partial t} = -\nabla \cdot \left(\vec{P}_{e} \vec{V}_{e} \right) + \left(\gamma - 1 \right) \vec{V}_{e} \cdot \nabla \vec{P}_{e} + \sum \vec{Q}_{e-n} \\ & \frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} \\ & \vec{J} = \frac{\nabla \times \vec{B}}{\mu_{0}} \\ & \vec{V}_{e} = \sum_{i} \frac{n_{i} \vec{V}_{i}}{n_{e}} - \frac{\vec{J}}{n_{e}} \\ & \vec{E} = -\sum_{i} \frac{n_{i} \vec{V}_{i} \times \vec{B}}{n_{e}} + \frac{\vec{J} \times \vec{B}}{q_{e} n_{e}} - \frac{\nabla \vec{P}_{e}}{q_{e} n_{e}} + \frac{m_{e}}{q_{e}} \left(\sum_{n} \nu_{n-e} \vec{U}_{n} + \sum_{i} \nu_{e-i} \vec{V}_{i} \right) - \frac{m_{e}}{q_{e} n_{e}} \left(\sum_{n} \nu_{n-e} + \sum_{i} \nu_{e-i} \right) \left\{ \sum_{i} n_{i} \vec{V}_{i} - \frac{\vec{J}}{q_{e}} \right\} \end{aligned}$$

III. Model Validation

The validation of the model involves but is not limited to the following cases of study:

#	Collisions	\vec{B}_{ext}	\vec{B}_{crust}	Neutral wind
1	ν_{i-n} only	Uniform, ↑	No	No
2	$ u_{i-n}$ only	Uniform, \rightarrow	No	No
3	$ u_{i-n}$ only	Uniform, ↑	No	Uniform, \rightarrow , $\perp \vec{B}$
4	$ u_{i-n}$ only	Uniform, \rightarrow	No	Uniform, \rightarrow , $\parallel \vec{B}$
5	ν_{i-n} only	Uniform, \rightarrow	No	Uniform, \rightarrow , $\perp \vec{B}$

Figure 3: Electron density *n*_e and ion– neutral collision frequency ν_{i-n} vs. altitude z (nightside) [3].

- motivation for such a complex model is as follows:
- Ionospheric composition (e & 71% O⁺₂, 25% CO⁺₂, 4% O⁺) \Rightarrow multifluid model [5]
- Neutral winds \Rightarrow 3-D model
- Complex magnetic field configuration (Figures 1 & 2) \Rightarrow systematic validation approach
- 100 km \times 50 km \times 400 km space scale \Rightarrow efficient numerical model

Figure 1: View of Mars' remnant crustal magnetic field. Figure courtesy of Jack Connerney.

Figure 4: Example of diagnostics for $U_n = 0$, $B_z = 20$ nT. References

- S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163-202. Birkhäuser Press, 1997.
- [2] D. A. Brain, R. J. Lillis, D. L. Mitchell, J. S. Halekas, and R. P. Lin. Electron pitch angle distributions as indicators of magnetic field topology near mars. J. Geophys. Res., 112(A9), 2007
- M. Fillingim, L. Peticolas, R. Lillis, D. Brain, J. Halekas, D. Lummerzheim, and S. Bougher. Localized ionization patches in the nighttime ionosphere of mars and their electrodynamic

V. Conclusions & Future Work

The results and conclusions resulting from this work can be summarized as follows:

- Mars ionosphere can be efficiently modeled using a multifluid model
- Early phase of validation has already started This work consists in a first step towards the study of:

oline Figure 2: The percent occurrence of open magnetic field lines (i.e. connecting the IMF to the Martian atmosphere) at \sim 400 km altitude on the nightside and dayside [2].

consequences. *Icarus*, 206(1):112–119, 2010. Solar Wind Interactions with Mars. [4] P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1996. [5] C. Paty and R. Winglee. The role of ion cyclotron motion at ganymede: Magnetic field morphology and magnetospheric dynamics. *Geophys. Res. Lett.*, 33(10), May 2006. [6] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge Univ. Press, New York, NY, second edition, 1992.

• the influence of Mars' remnant crustal magnetic fields on the ionospheric currents • the impact of neutral winds of ionospheric dynamics • the differences between dayside and nightside ionosphere as well as non-uniform ionization (see Figure 2)

This work was supported by the National Aeronautics and Space Administration under grant NNX10AM88G-MFRP to the Georgia Institute of Technology.