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ABSTRACT
The lightning rod was invented in the mid-1700’s by Benjamin Franklin, who

suggested that the rods should have sharp tips to increase the concentration of elec-
tric fields, and also to prevent the rod from rusting.[1, 2] More recently, Moore et al.
suggested that the strike-reception probabilities of Benjamin Franklin’s rods are
greatly increased when their tips are made moderately blunt.[2] In this work, we use
Townsend’s equation for corona discharge, to find a critical radius and minimum
breakdown voltage for cylindrical and spherical geometries. We solve numerically
the system of equations and present simple analytical formulas for the aforemen-
tioned geometies. These formulas complement the classic theory developed in the
framework of Townsend theory.[3, 4]

INTRODUCTION
Interest in lightning protection has been renewed in the past decades due to po-

tential hazards to a variety of modern systems, such as buildings, electric power and
communications systems, electronic integrated circuit chips, aircraft, and boats.[5]

Current lightning protection devices can reduce damage in two different ways: (1)
†Graduate Mentor
‡Faculty Mentor



by hampering the formation of lightning, (2) by intercepting the lightning through a
lightning rod.[6, 7] Understanding the complex nature of lightning is made challeng-
ing by the difficulty of reproducing atmospheric processes in laboratories. These
difficulties are accentuated by the many scales of the lightning phenomenon, which
involves microphysical processes developing in a multi-kilometer scale discharge.[7]

However, it is now understood that lightning is an atmospheric discharge of the
same nature as the spark.[3]

ELECTRON AVALANCHES, CORONA, STREAMERS, AND LEADERS
The building block of any electrical discharge is the electron avalanche.[3] The

avalanche begins with a small number of “seed” electrons that appear accidentally,
for example due to cosmic rays.[3] Under the influence of an electric field, these
electrons gain kinetic energy which is lost in collisions with neutral particles,[8]

ionizing these particles and creating new electrons. The so-created electrons ex-
perience the same acceleration as the seed electrons, until they collide with more
atoms creating new ions and electrons[3, 9]. The process repeats itself forming the
“electron avalanche.”

A glow corona can be observed in the dark or in bad weather on high-power
transmission lines or as St. Elmo’s fires on the mast of a ship or airplane.[5] Glow
coronae are also responsible in part for the noise of a transistor radio.[5, 9] Physically,
a glow corona developing near a grounded object under severe weather conditions
is a region of moderately ionized plasma that conducts a very small ionic current,
on the order of a few µA, though approaching lightning can cause the current to
increase to a few mA.[10] The electric field around the tip of a lightning rod will
vary with geometry, but it can hypothetically range from 0.2 kV/cm to 2.7 kV/cm
depending on the proximity (or existence thereof) of an approaching lightning.[10]

Glow coronae are formed in strongly nonuniform electric fields[3] by ioniza-
tion of the neutral particles of air. In order to maintain the corona discharge, the
electrons released during the ionization process must replace the electrons lost to
attachment to ambient molecules.[3] The rate of ionization is therefore fundamen-
tal and is expressed as the ionization coefficient, α, which measures the number of
ionization events performed by an electron in a 1 cm path along the electric field.[3]

Each electron has an exponential effect towards the avalanche, which can be de-
scribed by the following equation:[3, 4, 11]∫ R2

R1

α dr = lnQ (1)

where Q is the number of electrons in the avalanche, R1 and R2 are the positions
of the first and second electrode respectively, d = R2 − R1 is the distance between
the two electrodes and r is the position between the electrodes. The value, Q =
104, is used in this paper, since this value is in good agreement with published
experimental values for point and wire configurations, and also for positive and
negative corona.[11]



In the case of atmospheric discharges, glow corona can greatly influence the ini-
tiation of more ionized plasma discharges such as streamers and leaders, discussed
hereafter.[10] Streamers are moderately, one can even say weakly ionized plasma
channels that are necessary for the extension of leader channels, constituting the
lightning branches.[3] In the case of atmospheric discharges, streamers are produced
and destroyed at the rate of∼ 109 Hz[12] in the so-called streamer zone of the atmo-
spheric lightning channel. Streamers can be self-sustained[13] and propagate due to
the relatively high electric field at their tip also referred to as the streamer head.[14]

Streamers can lead to perhaps the most notorious atmospheric discharge: light-
ning. The lightning channel is commonly called a leader.[9] Leaders are highly
conductive plasma filaments,[3] with very high ionization currents, on the order of
several kA.[5] Bazelyan and Raizer[9] stated that the foremost condition of leader
formation in air is an increase in gas temperature, at least to the extent necessary to
suppress a decrease in conductivity owing to electron attachment.[9] The tempera-
ture of a leader is & 5000 K, which is significantly higher than the 300 K typical
of streamer corona.[14, 15] This increase in temperature is due to the merging of the
streamer currents starting from the leader tip.[16] An increase in conductivity due
to an increase in temperature will result in the narrowing of current flow to a thin
channel.[9] The currents of all of the streamers starting from a leader tip are summed
up, leading to Joule heating of the region ahead of the tip and therefore to increase
in its thermal energy.[14] The increase in thermal energy will increase the conductiv-
ity of the region ahead of the tip, thus extending the channel further. The process of
leader propagation is not fully understood[17] at present and falls beyond the scope
of this present paper. A brief summary comparing the types of discharges discussed
previously is given in Table I.

Table I: Atmospheric discharge characteristics at ground level (adapted from [14]).

Parameter Glow Corona Streamer Leader
Temperature ∼300 K ∼300 K[14] & 5000 K[9, 15]

Electron energy 1–2 eV[4] 5–15 eV[15] 1–2 eV[18]

Electric field 0.2–2.7 kV/cm[10] 5–7.5 kV/cm[15] 1–5 kV/cm[9]

Electron density 2.6×108 cm−3[3] 5×1013−1015cm−3[9, 15] 4×1014cm−3[13]

TOWNSEND BREAKDOWN
Townsend’s model deals with dark discharge and glow corona (the primary dif-

ference between the two being the luminous “glow”). Townsend discharge occurs
in the presence of two parallel plate electrodes with a voltage difference of a few
kV in standard conditions in between them. Based on experimental data, Townsend
suggested a formula for the ionization coefficient, α:[3, 19]

α = Ape−
Bp
E (2)



where A (1/cm/Torr) and B (V/cm/Torr) are empirically calculated constants that
vary with the composition of the gas, p is pressure of the gas in Torr, and E is the
electric field in V/cm.[3, 4] Using equations (1) and (2) and Poisson’s equation, a crit-
ical (minimum) breakdown voltage can be derived and plotted as graphs known as
the Paschen curves.[3] Of particular interest in this paper is Stoletov’s point, which
is the point of maximum current and more importantly minimum voltage for the
initiation of corona discharge in a plane-plane configuration.[4]

It is believed that corona discharge may attract approaching downward leaders[20–22].
Based on repeated observation, it is generally accepted that a lightning leader
progresses to about 10 m above the ground until the electric field at a point on
the ground surface has increased sufficiently to cause an upward leader to be
initiated.[23] The upward-leader evolves from a corona discharge into a high cur-
rent leader, which can establish a connecting path with the downward lightning
leader.[20] Since this observation holds if the object struck is fitted with a lightning
rod,[21] an ideal lightning rod should readily produce an upward connecting leader.

In the application of lightning rods, experimental results suggest that lightning
rods with blunt tips are more effective than the rods with sharp tips.[1, 2, 24, 25] The
effectiveness of the blunt-tipped rod is suggested to be related to the corona onset
on the geometry of the rod.[11] To date, a full quantitative description of upward
leader development is yet to be developed. A simple first-order approximation
of the corona discharge is needed, because the effect it has on the leader initia-
tion and therefore on a lightning protection device’s efficiency is not negligible.[26]

The conversion of corona into an upward leader is a critical part of the lightning
attachment process.[22] Lowke and D’Alessandro[11, 25] formulated theoretical mod-
els of glow corona around the lightning rod tip using variations of Peek’s formula
(Ec = 30δ

(
1 + 0.3√

δR1

)
, where Ec is in kV/cm and δ is the relative air density[11]).

However, Peek’s formula does not allow for the evaluation of the minimum break-
down voltage as a function of the rod’s radius. Gary et al.[19] suggested the use

of α = k p
p0

((
E
E0

)2 (
p0
p

)2

− 1

)
instead of Townsend’s equation (2), where p0 is

a reference pressure (≈ 105 Pa) and E0 is the reference electric field (≈ 24-31
kV/cm) at p0. Gary et al.[19] state that Townsend’s law is satisfactory for higher val-
ues of E

p
, but dismisses the use of Townsend’s equation for lower values.[19] Lowke

and D’Alessandro[11] theorized that the Townsend mechanism would suggest that
results are dependent on electrode materials. However, the experimental results
are remarkably independent of the composition of the electrodes.[11] On the other
hand, the use of Townsend’s breakdown criterion allows for the estimation of the
minimum breakdown voltage.

In this work, the constants A and B are fitted to an exact formulation for α[8]:

α =
νi(E)− νa2(E)

µe(E)E



where νi, νa2 , and µe are the ionization frequency, two body attachment frequency,
and electron mobility respectively. νi, νa2 , and µi are obtained using models formu-
lated by Morrow and Lowke[27]. The coefficients A and B are calculated using an
exponential fit to the curve E

N
vs. α

N
, where N is the atmospheric neutral density.

In this work, the electric field and minimum breakdown voltage for the initiation of
the corona surrounding a lightning rod are calculated numerically and approximated
analytically for the cases of cylindrical and spherical geometries.

MODEL FORMULATION
In equation (2), A and B are dependent on the composition of the gas. Raizer[3]

uses values of A = 15 1/cm/Torr and B = 365 V/cm/Torr; however, better approx-
imations can be obtained based on the numerical results of Morrow and Lowke§.[27]

Using an exponential fit with values of α obtained using these results[27] for νi, νa2 ,
and µe, the optimal values are: A = 7.0 1/cm/Torr and B = 258 V/cm/Torr. Figure
1 compares the results.

After the evaluation of A and B, general expression for the electric field is
obtained from Poisson’s equation in the absence of space charge: ∇2V = 0 with
the following boundary conditions:

E(c) = δE0 V (R2) = 0 (3)

where V is the electric potential (E = −~∇V ), R2 is an arbitrarily large distance
from the electrode where the voltage is 0 and c is the position of the corona front.
The ratio δ = p

p0
is a scaling factor for different pressures, and E0 is the classic

breakdown electric field. Beyond the corona front (r > c), E falls below the classic
breakdown electric field, causing ionization to stop, and yielding the first boundary
condition. We then substitute E in (1) and solve for c. Finally an expression for
the critical voltage is obtained as a function of d for corona discharge in Cartesian
geometry and R1 and R2 as Vc = V (R1), for corona discharge around cylindrical
or spherical objects.

CARTESIAN COORDINATES
Townsend discharge in the Cartesian case involves two parallel plates, some

distance d apart with a gas at a pressure, p. Townsend’s equation (2) approxi-
mates the experimental data well, though the model fails at higher values of pd
(pressure·distance) in part because of the appearance of different ionization phe-
nomena such as the formation of streamers, which require a different model.[9, 19]

The Cartesian solution of Townsend’s breakdown is well-known and studied by
various authors.[3, 4] Due to symmetry, the electric field is uniform between the two

§The air1.m function can also be used, though slightly different values of A and B
will be acquired. The air1.m function is explained in detail in [28] and can be found at
pasko.ee.psu.edu/air/air1.m. For the purposes of this paper, only formulations of Morrow and
Lowke[27] employed.
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Figure 1: The values of α for different models

plates which simplifies the integral of equation (1). Substituting Equation (2) into
Equation (1), gives:∫ R2

R1

(
Ape−

Bp
E

)
dr =

(
Ape−

Bp
E

)∫ R2

R1

dr = Ap (R2 −R1)︸ ︷︷ ︸
d

e−
Bp
E = lnQ (4)

Solving equation (4) for E and noting that V = Ed due to the uniform electric field
gives:

E = − Bp

ln
(

lnQ
Apd

) ; V = − Bpd

ln
(

lnQ
Apd

) (5)

This well-known result can be found in [3, 4] under the form: V = Bpd

ln(pd)+ln( A
lnQ)

.

Stoletov’s minimum values are obtained as:[3]

dmin =
e

Ap
lnQ ; Emin = Bp ; Vmin =

eB

A
lnQ (6)



CYLINDRICAL COORDINATES
In this section, we calculate the critical breakdown voltage in a cylindrical ge-

ometry as a function of the radii R1 and R2 of the inner and outer electrodes. The
derived equations will be in terms of R1 and R2 as opposed to d since it is well
established that ionization is a function of the breakdown electric field (E0) and
the curvature radius (R1) of the electrode.[29] The cylindrical case starts off with
Poisson’s equation in cylindrical coordinates (r, φ, z). Assuming symmetry with
respect to φ and z, we have ∂V

∂φ
= 0 = ∂V

∂z
. Poisson’s equation for an axisymmetric

cylindrical geometry with no axial variation gives:[4] 1
r
∂
∂r

(
r ∂V
∂r

)
= 0. The solution

of this differential equation is:

V = k1 ln r + k2 (7)

where k1 and k2 are integration constants. Using the boundary conditions specified
by (3), we have E(c) = δE0, for which ionization equals attachment.[11] Addition-
ally, the voltage will be zero at a distance R2 that is sufficiently larger than R1. In
this work, we used R2 = 1 m. Using these boundary conditions, the equations for
voltage and electric field can be found as:

E =
δE0c

r
; V = δE0c ln

R2

r
(8)

Substituting (8) into Equation (1), we obtain:

∫ c

R1

Ape−
Bp
E =

∫ c

R1

Ape
− Bpr
δE0c =

Apc
(
e
− Bp
δE0 − e−

BpR1
δE0c

)
− Bp
δE0

= lnQ (9)

which we solve for c. An analytical approximation of the solution can be

obtained through a Taylor expansion of the exponential term, e−
BpR1
δE0c ≈ 1 −

BpR1

δE0c
. This is justified by noting that in reality, c � R1.[11] Substituting

into Equation (9) and simplifying yields a closed form solution for c, c =

B (lnQ+ ApR1)/
(
AδE0

(
1− e

−Bp
δE0

))
. Having substituted c into Equation (8)

leads to:

V (r) =
B ln

(
R2

r

)
(lnQ+ ApR1)

A(1− e
−Bp
δE0 )

E(r) =
B(lnQ+ ApR1)

rA(1− e
−Bp
δE0 )

(10)

and consequently,

Vc = V (R1) =
B ln R2

R1
(lnQ+ ApR1)

A(1− e−
Bp
δE0 )

; Ec = E(R1) =
B(lnQ+ ApR1)

AR1(1− e−
Bp
δE0 )

(11)



The minimum of Vc with respect to R1 occurs at the root, Rmin of ∂Vc

∂R1
= 0. Solving

for R1 gives:

R1 = Rmin =
− lnQ

Ap · ProductLog
(
e lnQ
ApR2

) (12)

where ProductLog is the inverse function of f(x)=xex. In order to obtain a simpler
form of (12), a first order Taylor expansion is used, ProductLog(−x) ≈ −jπ +
ln(−x)§. This leads to:

Rmin = − lnQ

Ap
(
jπ + ln

(
−e lnQ
ApR2

))
Since ln(−e) = jπ + 1, the imaginary part of the solution cancels leaving a purely
real answer of:

Rmin =
− lnQ

Ap
(
1 + ln lnQ

ApR2

) (13)

The minimum critical electric field and voltage can be found by substituting Equa-
tion (13) into (11):



λ = lnQ
ApR2

κ = Bp0
E0

Vmin =
B

A

lnQ

1 + 1/ lnλ

ln
(
− 1
λ

(1 + lnλ)
)

1− exp(−κ)
Emin =

Bp lnλ

exp(κ)− 1

(14)

SPHERICAL COORDINATES
Deriving the minimum breakdown voltage for corona discharge in spherical

coordinates uses the same assumptions as those employed in the cylindrical case.
We start with Poisson’s equation in spherical coordinates (r, θ, φ). The electric field
is now independent of θ and φ, as opposed to φ and z. In spherical coordinates, the
general solution for the electric potential becomes:

V = −k1

r
+ k2

§In certain intervals, ProductLog has more than one solution. For sake of continuity, the principal
root is generally used, but in this particular application, the correct root was not the principal root
(the principal root will give a solution that breaks the assumption that R2 � R1). The Taylor
expansion used converges to the desired root as opposed to the principal root. ProductLog is also
known as the Lambert-W or Omega function. For more information on the ProductLog function,
visit http://documents.wolfram.com/mathematica/functions/ProductLog.



Using the boundary conditions (3), we obtain formulas for potential and electric
field.

V (r) = c2δE0

(
1

r
− 1

R2

)
; E(r) =

c2δE0

r2
(15)

The value of c is obtained from substituting (15) into Equation (1), which yields the
following integral: ∫ c

R1

Ape
−Bpr2

δE0c
2 dr = lnQ

Apc
√
π
√
δE0

2
√
Bp

(
Erf

(√
Bp

δE0

)
− Erf

(
R1

c

√
Bp

δE0

))
= lnQ

(16)

where Erf(x) = 2√
π

∫ x
0
e−t

2
dt. As previously, we use a Taylor expansion: Erf(x) ≈

2x√
π

. This approximation is justified by noting that c � R1 (and therefore R1

c
≈ 0).

For typical values (B ' 258 V/cm/Torr, E0 ' 31 kV/cm, δ = 1, and p = 760 Torr),

Erf
(√

Bp
δE0

)
≈ 1. This leads to:

Erf

(√
Bp

δE0

)
≈ 1 ; Erf

(
R1

c

√
Bp

δE0

)
≈ 2√

π

R1

c

√
Bp

δE0

(17)

Substituting Equation (17) into Equation (16) gives, after simplification c =
2
√
Bp

Ap
√
πδE0

, which with (15) gives:

V (r) =
4B (lnQ+ ApR1)

2

πA2p

(
1

r
− 1

R2

)
E(r) =

4B (lnQ+ ApR1)
2

πA2pr2
(18)

Although imperfect, the above approximation provides a practical analytical solu-
tion for the voltage needed to initiate a corona discharge around spherical objects.
Since the critical voltage and electric field will occur at the inner electrode, the
critical voltage is:

Vc = V (R1) =
4B (lnQ+ ApR1)

2

πA2p

(
1

R1

− 1

R2

)
Ec = E(R1) =

4B (lnQ+ ApR1)
2

πA2pR2
1

(19)

The minimum voltage for corona breakdown is obtained by solving ∂Vc

∂R1
= 0. Solv-

ing for R1 results in a cubic equation with three roots:

R1 = − lnQ

Ap
; R1 =

R2

4

(
1±

√
1− 8 lnQ

ApR2

)
(20)



The first root is extraneous (R1 cannot be negative), and the second root is forbidden
by the assumption that R2 � R1. This leaves the third root which is:

R1 = Rmin =
R2

4

(
1−

√
1− 8 lnQ

ApR2

)
(21)

In reality, we have R2 →∞. This limit diverges in cylindrical geometry due to the
logarithm, but in spherical coordinates, we get:

Rmin = lim
R2→∞

R2

4

(
1−

√
1− 8 lnQ

ApR2

)
=

lnQ

Ap
(22)

Assuming R2 is infinite and substituting (22) into (19), the critical electric field and
voltage in spherical coordinates are:

Emin =
16Bp

π
; Vmin =

16B lnQ

πA
(23)

RESULTS

Using the revised values ofA andB fitted using Morrow and Lowke’s[27] values
for νi, νa2 , and µe, the obtained analytical solutions are in good agreement with the
numerical solution for all three geometries, most notably around the minimum. The
values at the minimum for both cylindrical and spherical geometries are shown in
Table II.

Table II: Critical Values in Cylindrical and Spherical geometry.

Parameter Numerical Analytical % Error
Cylindrical

Critical Radius (cm) 1.4× 10−4 1.5× 10−4 8%
Critical Electric field (kV/cm) 3.3× 104 3.6× 104 9%
Critical Voltage (kV) 4.9 4.9 0.6%

Spherical
Critical Radius (cm) 2.3× 10−3 1.7× 10−3 26%
Critical Electric field (kV/cm) 2.6× 103 1.0× 103 61%
Critical Voltage (kV) 6.0 1.7 71%

Figure 2(a) plots the breakdown voltage Vc (V) for each geometry as a function
of the product, pd or pR1 (cm-Torr) in the same way as the original Paschen curve.
Solid lines indicate the analytical solutions and dashed lines indicate the numerical
solution using Morrow and Lowke’s[27] models. Arrows point to both the numerical



and analytical solutions in Cartesian, cylindrical, and spherical geometries. Also,
(car.) indicates the Cartesian solution, (cyl.) indicates the cylindrical solutions,
and (sph.) indicates the spherical solutions. An ‘×’ denotes the location of the
minimum on each curve.

Figure 2(b) plots the breakdown voltage Vc (V) for each geometry as a function
of δd or δR1 (m). As in Figure 2(a), solid lines indicate analytical solutions, dashed
lines indicate the numerical models based on Morrow and Lowke’s[27] models and
(car.), (cyl.), and (sph.) correspond to Cartesian, cylindrical, and spherical geome-
tries, respectively. The minima are also marked with ‘×’. The axes were scaled to
show the location of the minimum in cylindrical geometries, which occurs towards
the left side of the graph.

Figure 2(c) plots the breakdown electric field Ec (V/m) as a function of δd or
δR1 (m) for each geometry with the same legend as the two prior graphs. Here, ‘×’
denotes the location of Rmin and the critical electric field for this value.

Finally, Figure 3 compares breakdown voltage (V) as a function of δR1 (m)
for the models of cylindrical and spherical onset corona proposed by Lowke and
D’Alessandro[11] to the analytical and numerical voltages obtained in the previous
section, in cylindrical and spherical geometry, respectively. The arrows point to the
numerical solution, the analytical solution, and the curve corresponding to the mod-
els of Lowke and D’Alessandro.[11] As previously, an ‘×’ is placed at the minimum
where applicable.

DISCUSSION AND COMPARISON

In this section, we discuss the significance and accuracy of the numerical and
analytical solutions to the problem of breakdown voltage for initiation of Townsend
discharge in a parallel plate configuration and of corona discharges in cylindrical
and spherical geometries. The curves of the Cartesian solution in Figure 2(a) rep-
resent the classic solution to the Cartesian problem, and show the well-known form
of the Paschen curves [e.g., 3]. For large values of δR1, the numerical solutions
of all geometries converge toward the cartesian solution, since both cylindrical and
spherical geometries will locally behave like a plane-plane configuration when the
two electrodes are closer together.

Paschen curves show that the critical electric field is dependent on the product
pd, i.e., the corona breakdown voltage follows a similarity law.[3, 29] In the case
of the spherical analytical solution, the voltage is a function of the product: pR1.
These results, namely that the breakdown voltage follows a similarity law, suggest
that initiation of a corona around a spherical object can be minimized for a given
radius by modifying the pressure. In the atmosphere, this could be accomplished
by lifting the object to higher altitudes, i.e. to lower pressures. The critical radius,
electric field, and breakdown voltage in spherical geometry has a nearly identical
form to the values at Stoletov’s point in Cartesian geometry, the difference being
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D’Alessandro’s[11] solution.
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Figure 3: Breakdown curves in various geometries.



a factor of 16
π

as opposed to e, i.e, a factor of ∼2 (1.87). It appears that cylindrical
geometries do not follow the same similarity law due to the presence of a logarithm
in the analytical solution.

While Gary et al.[19] states that Townsend’s equation is “satisfactory” for higher
values of E, the cylindrical and spherical case diverge from the numerical solutions
at these values. A possible explanation to this observation lies in the assumption
that R1

c
≈ 0 in the Taylor expansion of the ProductLog and Erf functions. In reality,

it is possible that c 6� R1 which may limit the accuracy of the analytical formulas.
Lowke and D’Alessandro[11] use a quadratic model in the cylindrical case and a

linear model in the spherical case due to the difficulty in solving these expressions
analytically. Figure 3 shows that Lowke and D’Alessandro’s[11] models are roughly
an order of magnitude different from either the numerical or analytical solution in
both geometries. The fit could be improved if numerical parameters in Lowke and
D’Alessandro’s formulas were adjusted in a similar way to that used in this work
for the coefficients of A and B.

In spherical geometry, Lowke and D’Alessandro’s[11] model for voltage differs
by several orders of magnitude for low values of δR1, but agreement is reasonable
near the minimum δR1 ≈ 2 × 10−5 = 20 µm. This complements the analytical
solution which is more accurate for lower values δR1, but the linear approximation
is overall less accurate than the Townsend equation in spherical geometry. Addi-
tionally, Lowke and D’Alessandro’s model does not show a minimum point which
is suggested by the results of our work.

It should be noted that the minima obtained in this study using Townsend’s
equation in Cartesian, cylindrical, and spherical geometries appeared to be asso-
ciated with critical electric fields that exceed the thermal runaway electric fields
(Eth ≈ 260 kV/cm[28]). This suggests that classic estimates of Stoletov’s point
in Paschen theory as well as the new results presented in this study, should be re-
garded cautiously as they may be located in a region where ionization and two-body
attachment could not be the dominant processes. In addition, theoretical minimum
radii are on the order of µm, corresponding to very small or very sharp pointed
lightning rods, which does not explain at present the results of the field studies
by Moore et al..[1, 2, 24] Consequently, further research is required to determine the
lightning rod optimum radius and to give an accurate theoretical explanation for
Moore et al.’s results.

CONCLUSIONS
Corona onset is fundamental for creation of an upward leader[21] and hence for

the development of more effective lightning rods.[11] Golde[20, 21] hypothesized that
the lightning rod’s efficiency is dependent on how readily upward leaders form
from the lightning rod’s tip; however, Golde’s hypothesis has not yet been con-
firmed theoretically.[7] Moore et al.’s experiments suggest that there is an optimum
radius, but none of the published models based on Peek’s equation allow for the



evaluation of a minimum.[11, 19] The models presented in this paper introduce ana-
lytical formulas as well as numerical solutions, that allow for a first estimation of
the critical radius and minimum breakdown voltage for corona discharge around
lightning rods in cylindrical and spherical geometries. However, these models pre-
dict electric fields that exceed thermal runaway of the electric field for corona onset
(≈ 260 kV/cm).[28] To resolve this issue, proposed models may be further improved
by fitting the constants A and B not only to different proposed numerical models,
but by restricting the fits to more realistic electric fields for corona discharge. Ad-
ditionally, other factors such as space charge effects need to be considered as well
in theoretical models of upward leader development.[22]
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